290 research outputs found

    Modeling and Simulation of Thermo-Fluid-Electrochemical Ion Flow in Biological Channels

    Get PDF
    In this article we address the study of ion charge transport in the biological channels separating the intra and extracellular regions of a cell. The focus of the investigation is devoted to including thermal driving forces in the well-known velocity-extended Poisson-Nernst-Planck (vPNP) electrodiffusion model. Two extensions of the vPNP system are proposed: the velocity-extended Thermo-Hydrodynamic model (vTHD) and the velocity-extended Electro-Thermal model (vET). Both formulations are based on the principles of conservation of mass, momentum and energy, and collapse into the vPNP model under thermodynamical equilibrium conditions. Upon introducing a suitable one-dimensional geometrical representation of the channel, we discuss appropriate boundary conditions that depend only on effectively accessible measurable quantities. Then, we describe the novel models, the solution map used to iteratively solve them, and the mixed-hybrid flux-conservative stabilized finite element scheme used to discretize the linearized equations. Finally, we successfully apply our computational algorithms to the simulation of two different realistic biological channels: 1) the Gramicidin-A channel considered in~\cite{JeromeBPJ}; and 2) the bipolar nanofluidic diode considered in~\cite{Siwy7}

    Solution Map Analysis of a Multiscale Drift-Diffusion Model for Organic Solar Cells

    Full text link
    In this article we address the theoretical study of a multiscale drift-diffusion (DD) model for the description of photoconversion mechanisms in organic solar cells. The multiscale nature of the formulation is based on the co-presence of light absorption, conversion and diffusion phenomena that occur in the three-dimensional material bulk, of charge photoconversion phenomena that occur at the two-dimensional material interface separating acceptor and donor material phases, and of charge separation and subsequent charge transport in each three-dimensional material phase to device terminals that are driven by drift and diffusion electrical forces. The model accounts for the nonlinear interaction among four species: excitons, polarons, electrons and holes, and allows to quantitatively predict the electrical current collected at the device contacts of the cell. Existence and uniqueness of weak solutions of the DD system, as well as nonnegativity of all species concentrations, are proved in the stationary regime via a solution map that is a variant of the Gummel iteration commonly used in the treatment of the DD model for inorganic semiconductors. The results are established upon assuming suitable restrictions on the data and some regularity property on the mixed boundary value problem for the Poisson equation. The theoretical conclusions are numerically validated on the simulation of three-dimensional problems characterized by realistic values of the physical parameters

    The role of structural viscoelasticity in deformable porous media with incompressible constituents: applications in biomechanics

    Full text link
    The main goal of this work is to clarify and quantify, by means of mathematical analysis, the role of structural viscoelasticity in the biomechanical response of deformable porous media with incompressible constituents to sudden changes in external applied loads. Models of deformable porous media with incompressible constituents are often utilized to describe the behavior of biological tissues, such as cartilages, bones and engineered tissue scaffolds, where viscoelastic properties may change with age, disease or by design. Here, for the first time, we show that the fluid velocity within the medium could increase tremendously, even up to infinity, should the external applied load experience sudden changes in time and the structural viscoelasticity be too small. In particular, we consider a one-dimensional poro-visco-elastic model for which we derive explicit solutions in the cases where the external applied load is characterized by a step pulse or a trapezoidal pulse in time. By means of dimensional analysis, we identify some dimensionless parameters that can aid the design of structural properties and/or experimental conditions as to ensure that the fluid velocity within the medium remains bounded below a certain given threshold, thereby preventing potential tissue damage. The application to confined compression tests for biological tissues is discussed in detail. Interestingly, the loss of viscoelastic tissue properties has been associated with various disease conditions, such as atherosclerosis, Alzheimer's disease and glaucoma. Thus, the findings of this work may be relevant to many applications in biology and medicine

    A Computational Model for Biomass Growth Simulation in Tissue Engineering

    Get PDF
    This article deals with computational modeling of tissue growth under interstitial perfusion inside a polymeric scaffold-based bioreactor. The mathematical model is the result of the application of the volume averaging technique to the fluid, nutrient and cellular subsystems, and is capable to account for the temporal evolution of local matrix porosity, as the sum of a time-invariant component (the porosity of the uncellularized polymer scaffold) and a time-dependent component (due to the growing biomass). The solution algorithm is based on a block Gauss-Seidel iteration procedure that allows to reduce each time level of the simulated culture period into the successive solution of linearized subproblems, whose numerical approximation is carried out using stable and convergent finite elements. Numerical simulations are carried out to investigate the role of the design porosity of the scaffold on nutrient delivery and biomass production

    Effectiveness of dismantling strategies on moderated vs. unmoderated online social platforms

    Full text link
    Online social networks are the perfect test bed to better understand large-scale human behavior in interacting contexts. Although they are broadly used and studied, little is known about how their terms of service and posting rules affect the way users interact and information spreads. Acknowledging the relation between network connectivity and functionality, we compare the robustness of two different online social platforms, Twitter and Gab, with respect to dismantling strategies based on the recursive censor of users characterized by social prominence (degree) or intensity of inflammatory content (sentiment). We find that the moderated (Twitter) vs unmoderated (Gab) character of the network is not a discriminating factor for intervention effectiveness. We find, however, that more complex strategies based upon the combination of topological and content features may be effective for network dismantling. Our results provide useful indications to design better strategies for countervailing the production and dissemination of anti-social content in online social platforms

    A Multiscale Thermo-Fluid Computational Model for a Two-Phase Cooling System

    Get PDF
    In this paper, we describe a mathematical model and a numerical simulation method for the condenser component of a novel two-phase thermosyphon cooling system for power electronics applications. The condenser consists of a set of roll-bonded vertically mounted fins among which air flows by either natural or forced convection. In order to deepen the understanding of the mechanisms that determine the performance of the condenser and to facilitate the further optimization of its industrial design, a multiscale approach is developed to reduce as much as possible the complexity of the simulation code while maintaining reasonable predictive accuracy. To this end, heat diffusion in the fins and its convective transport in air are modeled as 2D processes while the flow of the two-phase coolant within the fins is modeled as a 1D network of pipes. For the numerical solution of the resulting equations, a Dual Mixed-Finite Volume scheme with Exponential Fitting stabilization is used for 2D heat diffusion and convection while a Primal Mixed Finite Element discretization method with upwind stabilization is used for the 1D coolant flow. The mathematical model and the numerical method are validated through extensive simulations of realistic device structures which prove to be in excellent agreement with available experimental data
    • …
    corecore